Abstract
AbstractNovel co‐polymerization polyimide (PI) fibers based on 4,4′‐oxydianiline (ODA)‐pyromellitic dianhydride (PMDA) were prepared. 2‐(4‐Aminophenyl)‐5‐aminobenzimidazole (PABZ) containing the NH group was introduced into the structure of the fibers as the proton donor. The results of Fourier transform infrared (FTIR) and dynamic mechanical analysis (DMA) showed that hydrogen bonding occured between the NH group and chains, which strongly enhanced interchain interaction. This hydrogen bonding interaction increased the tensile strength and initial modulus of the PI fibers up to 2.5 times and 26 times, respectively, compared to those of homo‐PI PMDA‐ODA fibers with no hydrogen‐bonding interaction because of the absence of proton donors after the imidization process. In the mean time, glass transition temperature (Tg) of the modified PI fibers was found to be 410–440°C, which was higher than that of the homo‐PI PMDA‐ODA fibers. From the result, a novel access to molecular design and manufacture of high performance PI fibers with good properties could be provided. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.