Abstract

The aim of the current work was to study natural radioactivity in soil and the correlation between 222Rn and 226Ra in the ground and to assess the onsite and indoor long-term excess cancer risk at the bauxite bearing area of Fongo-Tongo in Western Cameroon. 222Rn was measured in the ground at a depth of one meter, using Markus 10 detector. 226Ra, 232Th, and 40K activity concentrations were measured in soil by two techniques, in situ and laboratory gamma spectrometry. The mean values of 222Rn concentrations in the ground were 69 ± 18 kBqm−3 for Fongo-Tongo and 82 ± 34 kBq m−3 for the locality of Dschang, respectively. The mean values of 226Ra, 232Th, and 40K activity concentrations obtained with in situ gamma spectrometry were 129 ± 22, 205 ± 61, and 224 ± 39 Bq kg−1 for 226Ra, 232Th, and 40K, respectively, and those obtained by laboratory gamma spectrometry were 129 ± 23, 184 ± 54, and 237 ± 44 Bq kg−1, respectively. A strong correlation between 222Rn and 226Ra activity concentrations determined by in situ and laboratory measurements (R2 = 0.86 and 0.88, respectively) was found. In addition, it is shown that the total excess cancer risk has a maximum value of 8.6 × 10−3 at T = 0 year and decreases progressively in the long term. It is also shown that 226Ra makes a major contribution, i.e., above 70%, to the total excess cancer risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.