Abstract

It is not yet clear what triggers the activity of active galactic nuclei (AGNs), but galaxy merging has been suspected to be one of the main mechanisms fuelling the activity. Using deep optical images taken at various ground-based telescopes, we investigate the fraction of galaxy mergers in 39 luminous AGNs (M$_{R}\, \lesssim$ -22.6 mag) at $z \leq$ 0.3 (a median redshift of 0.155), of which the host galaxies are generally considered as early-type galaxies. Through visual inspection of the images, we find that 17 of 39 AGN host galaxies (43.6%) show the evidence for current or past mergers like tidal tails, shells, and disturbed morphology. In order to see if this fraction is abnormally high, we also examined the merging fraction of normal early-type galaxies in the Sloan Digital Sky Survey (SDSS) Strip 82 data (a median redshift of 0.04), of which the surface-brightness limit is comparable to our imaging data. To correct for the effects related to the redshift difference of the two samples, we performed an image simulation by putting a bright point source as an artificial AGN in the images of SDSS early-type galaxies and placing them onto the redshifts of AGNs. The merging fraction in this realistic sample of simulated AGNs is only $\sim 5 - 15\%$ ($1/4$ to $1/8$ of that of real AGNs). Our result strongly suggests that luminous AGN activity is associated with galaxy merging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.