Abstract

Vagus nerve stimulation (VNS) is an important option for the treatment of drug-resistant epilepsy. Through delivery of a battery-supplied intermittent current, VNS protects against seizure development in a manner that correlates experimentally with electrophysiological modifications. However, the mechanism by which VNS inhibits seizures in humans remains unclear. The impairment of γ-aminobutyric acid (GABA)-mediated neuronal inhibition associated with epilepsy has suggested that GABA A receptors might contribute to the therapeutic efficacy of VNS. We have now applied single photon emission computed tomography (SPECT) with the benzodiazepine receptor inverse agonist [ 123 I ]iomazenil to examine cortical GABA A receptor density (GRD) before and 1 year after implantation of a VNS device in 10 subjects with drug-resistant partial epilepsy. VNS therapeutic responses resulted significantly correlated with the normalization of GRD. Moreover, a comparable control group, scheduled for a possible VNS implant, failed to show significant GRD variations after 1 year of a stable anti-epileptic treatment. These results suggest that VNS may modulate the cortical excitability of brain areas associated with epileptogenesis and that GABA A receptor plasticity contributes to this effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.