Abstract

Aim: Several series have already demonstrated that intratumoral subvolumes with high tracer avidity (hotspots) in 18F-flurodesoxyglucose positron-emission tomography (FDG-PET/CT) are preferential sites of local recurrence (LR) in various solid cancers after radiotherapy (RT), becoming potential targets for dose escalation. However, studies conducted on head and neck squamous cell carcinoma (HNSCC) found only a moderate overlap between pre- and post-treatment subvolumes. A limitation of these studies was that scans were not performed in RT treatment position (TP) and were coregistred using a rigid registration (RR) method. We sought to study (i) the influence of FDG-PET/CT acquisition in TP and (ii) the impact of using an elastic registration (ER) method to improve the localization of hotpots in HNSCC.Methods: Consecutive patients with HNSCC treated by RT between March 2015 and September 2017 who underwent FDG-PET/CT in TP at initial staging (PETA) and during follow-up (PETR) were prospectively included. We utilized a control group scanned in non treatment position (NTP) from our previous retrospective study. Scans were registered with both RR and ER methods. Various sub-volumes (AX; x = 30, 40, 50, 60, 70, 80, and 90%SUVmax) within the initial tumor and in the subsequent LR (RX; x = 40 and 70%SUVmax) were overlaid on the initial PET/CT for comparison [Dice, Jaccard, overlap fraction = OF, common volume/baseline volume = AXnRX/AX, common volume/recurrent volume = AXnRX/RX].Results: Of 199 patients included, 43 (21.6%) had LR (TP = 15; NTP = 28). The overlap between A30, A40, and A50 sub-volumes on PETA and the whole metabolic volume of recurrence R40 and R70 on PETR showed moderate to good agreements (0.41–0.64) with OF and AXnRX/RX index, regardless of registration method or patient position. Comparison of registration method demonstrated OF and AXnRX/RX indices (x = 30% to 50%SUVmax) were significantly higher with ER vs. RR in NTP (p < 0.03), but not in TP. For patient position, the OF and AXnRX/RX indices were higher in TP than in NTP when RR was used with a trend toward significance, particularly for x=40%SUVmax (0.50±0.22 vs. 0.31 ± 0.13, p = 0.094).Conclusion: Our study suggested that PET/CT acquired in TP improves results in the localization of FDG hotspots in HNSCC. If TP is not possible, using an ER method is significantly more accurate than RR for overlap estimation.

Highlights

  • Head and neck squamous cell cancer carcinomas (HNSCC) are the sixth most common cancer [1, 2] with around 800,000 new cases worldwide in 2015

  • Concurrent chemo-radiotherapy is a standard of care in the curative-intent management of locally advanced tumors [4, 5]

  • Several studies have suggested that local recurrence (LR) of HNSCC treated with radiotherapy (RT) occurs mainly within the planning target volume (PTV) regardless of radiotherapy technique, suggesting that the radiation dose delivered may be insufficient for local tumor control [7]

Read more

Summary

Introduction

Head and neck squamous cell cancer carcinomas (HNSCC) are the sixth most common cancer [1, 2] with around 800,000 new cases worldwide in 2015. These tumors have a poor prognosis, with a 5-year survival rate < 50% [3], because two thirds of patients are diagnosed at advanced stage. Several studies have suggested that local recurrence (LR) of HNSCC treated with radiotherapy (RT) occurs mainly within the planning target volume (PTV) regardless of radiotherapy technique, suggesting that the radiation dose delivered may be insufficient for local tumor control [7]. The ability to accurately define and irradiate areas at high risk of recurrence could be useful to guide a boost protocol with the use of modern techniques such as intensity modulated radiotherapy (IMRT) and stereotactic radiotherapy [11, 12]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call