Abstract

The dorsal commissural nucleus (DCN) in the lumbosacral spinal cord receives afferent inputs from the pelvic organs via pudendal and pelvic nerves. Electrophysiological and morphological properties of neurons in the DCN of L6-S1 were examined using whole-cell recordings with biocytin-filled electrodes in transverse slices of mature rat spinal cord. Neurons were categorized into three groups according to their discharge in response to suprathreshold depolarizing pulses; neurons with tonic (19/42) and phasic (13/42) firing patterns, and neurons (10/42) that fired in bursts arising from a Ca(2+)-dependent hump. The predominantly fusiform somata of neurons labeled during recording (n = 31) had on average 3.1 primary dendrites, 7.5 terminating dendritic branches, 3.1 axon collaterals, and 14.2 axon terminations per neuron. The groups were morphologically distinct on the basis of their dendritic branching patterns. Phasic neurons (n = 10) had the most elaborate dendritic branching and the largest numbers of axon collaterals. All tonic neurons (n = 11) had axons/collaterals projecting to the intermediolateral area but none to the funiculi, suggesting that they function as interneurons in local autonomic reflexes. Many axons/collaterals of all phasic neurons lay within the DCN, suggesting that they integrate segmental and descending inputs. Seven of 10 neurons with Ca(2+)-dependent humps had axons/collaterals extending into one of the funiculi, suggesting that they project intersegmentally or to the brain. Ca(2+) hump neurons also had more axons/collaterals within the DCN and fewer in the intermediolateral area than tonic neurons. This correlation between firing pattern and morphology is an important step toward defining the cellular pathways regulating pelvic function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call