Abstract
The mechanical behaviors of Zr43.5Cu43.5Ni4Al8Nb1, Zr55.4Cu31.6Ni4Al8Nb1, Ti32.8Zr30.2Ni5.3Cu9Be22.7 (at.%) metallic glass at different strain rates were studied. For all the present alloys, the dispersion over 700 MPa was observed on the strength in the repeated dynamic compressions, which was much stronger than that of the quasi-static compressive strength. Such the dispersion of the dynamic compressive strength was well correlated with the corresponding fracture behaviors. The area of fracture surface was calculated and also showed a strong dispersion for all the fractured specimens tested at the strain rate of 500 s−1 and 1000 s−1. All the specimens showed a linear relationship between the square of dynamic compressive strength and the area of fracture surface in the dynamic compression tests. This phenomenon was mainly thought to be related to the difference of mean initial free volume concentration of different samples, stress concentration caused by the split Hopkinson pressure bar experimental setup and high sensitivity of defects under dynamic deformation. These findings were beneficial to deeply understand the effect of strain rate on the mechanical properties of the metallic glass.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.