Abstract

The present study was conducted in order to probe the microstructure, microviscosity, and hydration properties of matrices containing two model drugs, naproxen sodium (NS) and naproxen (N), and egg albumin (EA) as matrix carrier. The results suggested that N release from EA matrix was controlled by a bulk erosion mechanism in combination with additional processes (crystal dissolution/crystallization rate) compared with NS matrix, which behaved as a non‐erodible matrix and drug release occurred by diffusion through the gel. Using EPR technique it has been shown that incorporating NS into EA matrix strongly influences the microstructure of the protein gel, and hence the transport of the penetrant within the matrix, compared with matrices containing N. The presence of NS increased the protein chain mobility and hydration which supports our previous results showing that NS cause unfolding of EA. In contrast, N caused only marginal effect on EA chain mobility. The gel formed in EA/NS matrices was more porous compared with EA/N matrices as revealed by the lower rotational correlation time of PCA (lower microviscosity) in EA/NS matrices compared with EA/N. However, EA/N gelled matrices were more heterogeneous, i.e., containing a higher number of components having different mobility. The T1 and T2 relaxation studies by NMR provided an additional support for the higher chain hydration in EA/NS matrices compared with EA/N as indicated by the higher relaxation rates in the gelled matrices. Internal pH measurements by EPR revealed that the micro‐pH inside 100% EA and 50/50 EA/N matrices were lower than 50/50 EA/NS matrices and in all cases lower than the penetrating buffer pH. The lower pH compartment formed in N matrices affected N solubility and crystal dissolution rate, which can explain its lower release rate compared with EA, from the same formulation. The EPR and NMR data supports our findings that NS caused unfolding of the protein, affected matrix structure, and converted it to a hydrophobic non‐erodible matrix compared with EA/N matrix in which the native properties of EA were mainly retained. © 2000 Wiley‐Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 89: 365–381, 2000

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call