Abstract
The deformation-dependent evolutions of microstructure and of strength characteristics of pure copper processed by high-pressure torsion (HPT) have been studied under different values of the hydrostatic pressure. Multiple X-ray Bragg profile analysis (MXPA) and microhardness measurements were performed to analyze the structural and mechanical features of the samples deformed by HPT within wide ranges of true equivalent strains (0.5–100) and of applied pressures p = 4 to 8 GPa. A definite reciprocal correlation between the size of coherently scattering domains and the macroscopic flow stress has been revealed. This kind of domains represents that area of crystal which has been distorted less than 2° with respect to neighbouring areas of the grain. The data at best fit to a Hall–Petch like relation with an exponent of n = 1 which confirms that the macroscopic hardening is governed by subboundaries rather than by the boundaries of highly misoriented grains which size dependence on strain does not correlate at all with that one of the microhardness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.