Abstract

Transient forebrain ischemia induces a delayed neuronal death in the CA1 area of the hippocampus. However, the mechanism leading to this phenomenon has yet to be established. The authors used an mRNA differential-display method to isolate genes for which mRNA levels change only in the hippocampus during ischemia/reperfusion. They succeeded in identifying the product of one down-regulated gene as phosphatidylinositol 4-kinase (PI 4-K). Compared with control levels, PI 4-K mRNA expression in the hippocampus, but not the cerebral cortex, was significantly decreased by 30% and about 80% 1 and 7 days after ischemia/reperfusion, respectively. Interestingly, PI 4-K and PI bisphosphate levels were selectively decreased in the CA1 region, but not other regions, whereas TUNEL-positive cells could be detected 3 days after ischemia. Consistent with these results, PI 4-K expression was suppressed by hypoxia in SK-N-MC neuroblastoma cells before loss of cell viability. Overexpression of wild-type PI 4-K, but not the kinase-negative mutant of PI 4-K (K1789A), recovered the loss of viability induced by hypoxia. These findings strongly suggest that a prior decrease in PI 4-K and PI bisphosphate levels caused by brain ischemia/hypoxia is partly involved in delayed neuronal cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.