Abstract

When amorphous silica is bombarded with energetic ions, various types of defects are created as a consequence of ion-solid interaction (oxygen deficient centers (ODC), non-bridging oxygen hole centers (NBOHC), E′-centers, etc.). Luminescent peaks from oxygen deficiency centers at 2.7 eV, non-bridging oxygen hole centers at 1.9 eV and defect centers with emission at 2.07 eV were observed by changing the concentration of implanted Gd3+ ions. Charge trapping in Gd-implanted SiO2 layers was induced using constant current electron injection to study the electroluminescence intensity with dependence on the applied voltage change. The process of electron trap generation during high field carrier injection results in an increase of the electroluminescence from non-bridging oxygen hole centers. Direct correlation between electron trapping and the quenching of the electroluminescence at 2.07 eV and 2.7 eV was observed with variation of the implanted Gd concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.