Abstract

Cone penetration test (CPT) is probably the most popular in situ testing method in the world today. Various design parameters, such as undrained strength and relative density, as well as indices for liquefaction assessment, can be derived from the CPT. However, the use of CPT in many roading projects and in subdivision developments may be constrained by the number of tests or project cost; hence, alternative in situ testing technique to supplement the CPT is necessary. Screw Driving Sounding (SDS) is a new in situ test in which a machine drills a screw point into the ground in several loading steps while the attached rod is continuously rotated. During the test, a number of parameters, such as torque, load, speed of penetration and friction, are measured at every rotation of the rod; these provide a robust way of characterising soil stratigraphy. In this paper, the principle of SDS testing is described. SDS tests were performed at various sites in New Zealand where CPT data are available. Then, a side-by-side comparison between CPT and SDS is performed to derive correlations between the CPT tip resistance (qc), sleeve friction (fs) and soil behavior type index (Ic) and the SDS parameters. Based on the results, it is observed that qc correlates well with the penetration energy in SDS while fs and Ic are related to the average torque and change in torque, respectively. The good correlation obtained between CPT and SDS indicates that SDS can supplement CPT results for a more cost-effective geotechnical investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call