Abstract
ObjectiveTo investigate the correlation between corneal biomechanical properties and topographic parameters using machine learning networks for automatic severity diagnosis and reference benchmark construction.MethodsThis was a retrospective study involving 31 eyes from 31 patients with keratonus. Two clustering approaches were used (i.e., shape-based and feature-based). The shape-based method used a keratoconus benchmark validated for indicating the severity of keratoconus. The feature-based method extracted imperative features for clustering analysis.ResultsThere were strong correlations between the symmetric modes and the keratoconus severity and between the asymmetric modes and the location of the weak centroid. The Pearson product-moment correlation coefficient (PPMC) between the symmetric mode and normality was 0.92 and between the asymmetric mode and the weak centroid value was 0.75.ConclusionThis study confirmed that there is a relationship between the keratoconus signs obtained from topography and the corneal dynamic behaviour captured by the Corvis ST device. Further studies are required to gather more patient data to establish a more extensive database for validation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.