Abstract

The redox response of 2-methoxynaphthalene films electrosynthesized in two different organic solvents, acetonitrile (ACN) and nitrobenzene (NB) has been studied by different in situ electrochemical techniques: the in situ conductance technique, electrochemical quartz crystal microbalance (EQCM) and electrochemical voltage spectroscopy (EVS). In situ measurements of conductance as a function of the potential during p-doping of 2-methoxynaphthalene films, electrosynthesized in TBAPF 6-ACN and TBAPF 6-NB, show that the conductance properties are strongly dependent on the solvent used during electrosynthesis, resulting in higher conductance values for films electrosynthesized in NB solutions. The EQCM technique has been used to correlate the frequency changes (mass changes) at the electrode surface with conductance changes during p-doping of the different films. The molar mass of the species involved in the charging–discharging reactions has been estimated from the EQCM results. For the determination of the electrochemical bandgap of the two different films, cyclic voltammetry (CV) and EVS were applied. Films electrosynthesized in NB solutions have a lower value of the bandgap (1.34 eV) than films electrosynthesized in ACN solutions (2.00 eV).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.