Abstract

Infrared absorption spectroscopy performed in situ at the solid-liquid interface revealed that the adsorption on platinum supported catalysts of 1-(1-naphthyl)-ethylamine, which is used as a chiral modifier in hydrogenation catalysis, occurs through the amine group, not the aromatic ring as is widely believed. Comparisons were performed against a set of related modifier compounds with targeted substitutions to help identify the key moiety involved in the adsorption. It was determined that neither naphthalene-based modifiers without amine groups nor those with tertiary amine moieties are capable of adsorbing on the metal surface to any significant extent. A direct correlation was also found between the ability of the amines to adsorb on the platinum surface and their performance as chiral modifiers that impart enantioselectivity to the hydrogenation of α-keto esters such as ethyl pyruvate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.