Abstract

In this paper we investigate the local adsorption geometry of CoPc films adsorbed on a Ag(100) surface and its effect on the molecule–substrate interactions. Using high-resolution electron energy loss spectroscopy we demonstrate that the charge-transfer mechanism at the organic–metal interface depends on the structural properties of the CoPc film. We discuss these findings in terms of the molecular adsorption sites, as determined by X-ray photoelectron diffraction measurements and multiple scattering simulations. We show that the distance between the central Co atom and the topmost Ag layer is of the order of 0.3 nm. In addition, we demonstrate that the CoPc molecules adsorb on different atomic sites depending on the superlattice symmetry, as varied by changing the coverage. This is further confirmed by low-energy electron diffraction and scanning tunneling microscopy measurements, emphasizing that, depending on the molecular superstructure adopted by the molecules, there are one or two molecules per unit...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.