Abstract

AbstractSteady shear viscosity and ionic conductivity have been measured for nine commercial diglycidyl ether of bisphenol‐A (DGEBA) epoxy resins with molecular weights ranging from 340 to 14,200. The temperature dependence of viscosity and ionic conductivity was modeled using free volume viscosity and ionic conductivity relationships, which correlate the fractional free volume required for polymer chain segment motion (B) and the fractional free volume required for ion motion (B′) with polymer structure. The fractional free volume required for polymer chain segment mobility was observed to increase systematically with the molecular weight of the resins. The fractional free volume required for ion mobility did not vary for the resin series. A stoichiometric mixture of a low molecular weight DGEBA resin and a 4,4′‐diaminodiphenyl sulfone cross‐linker was partially polymerized to extents of reaction ranging from 0% to 49%. The fractional free volume required for polymer segment mobility for these partially polymerized samples was consistent with results for the neat resins. © 1993 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.