Abstract

The electrochemical monitoring of glucose consumption is relevant for cell biology studies because of its wide detection range, high sensitivity and easy implementation. Whereas the glucose consumption and cell growth rate can be tightly correlated, they should also be cell population density dependent. In this work, we fabricated high sensitive enzyme electrodes for accurate monitoring of glucose consumption of cells in different growth stages. The performance of the fabricated device was firstly evaluated by cyclic voltammetry (CV) with p-benzoquinone (PBQ) as redox mediator, showing a linear response over a wide detection range (0.3–60 mM), a high sensitivity (1.61 ± 0.10 μA mM −1 mm −2 ( n = 5)) and a low detection limit (80 μM). Then, daily glucose consumptions of NIH 3T3 cells in 24-well plates were determined for a period of 7 days. The results could be compared to the cell population growth curve, showing a close correlation but different behavior. We found that the increase of the glucose consumption took place prior the cell number increase but the glucose consumption per cell decreases linearly in the exponential growth stage of cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call