Abstract

Wire arc additive manufacturing (WAAM) features advantages such as low cost and high disposition rate, and thus WAAM is a feasible additive manufacturing process. Although some characteristics of WAAM have been documented in the literature, the process stability, structural integrity, component morphology, microstructure, and mechanical properties during WAAM under different arc modes are not comprehensively demonstrated and understood. Here, we performed WAAM experiments with 316L stainless steel under different arc modes and a constant deposition rate, and then we discussed the mechanism and impact of the arc mode on the manufacturing process stability, structural integrity, microstructures, and mechanical properties. The results indicate that the SpeedPulse and SpeedArc additive manufacturing processes are relatively stable, significantly efficient, and structurally sound. Although the deposition rate and scanning speed of SpeedPulse WAAM and SpeedArc WAAM are the same, SpeedArc WAAM has a lower heat input and a higher cooling rate. Therefore, SpeedArc WAAM produces a finer solidification structure than SpeedPulse WAAM. The ultimate tensile strengths of the SpeedPulse and SpeedArc additive manufactured specimens along the horizontal direction are greater than 540 MPa and slightly greater than previously reported results. Due to the lower heat input and finer solidification structure, a component produced by SpeedArc WAAM has greater tensile strength and hardness than a component produced by SpeedPulse WAAM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call