Abstract

Resistance towards the veterinary drug apramycin can be caused by the aac(3)-IV gene, which also confers resistance towards the important human antibiotic gentamicin. The objectives of this study were to investigate the temporal occurrence and the genetic background of apramycin and gentamicin resistance in Escherichia coli strains from pork, healthy pigs and diagnostic submissions from pigs and to investigate potential relationships to the use of apramycin and gentamicin at farm and national levels. Data on Danish E. coli isolates from healthy pigs (indicator bacteria), diagnostic submissions from pigs (clinical isolates) and pork were obtained from the national surveillance of antimicrobial resistance and from routine diagnostic laboratories. Antimicrobial consumption data were obtained from the Danish Medicines Agency (1997-2000) and from the VetStat database (2001-2004). The genetic background for gentamicin resistance was investigated by PCR. Relationships between antimicrobial usage and resistance were analysed by chi2 test and logistic regression. At the farm level, the occurrence of apramycin/gentamicin cross-resistance was correlated to the use of apramycin (P < 0.001). At the national level, occurrence of apramycin/gentamicin cross-resistance in clinical E. coli O149 isolates was significantly correlated with the amounts and duration of apramycin use. The aac(3)-IV gene was detected in all tested cross-resistant isolates. Apramycin consumption at farm level is most probably driving the increasing occurrence of apramycin/gentamicin cross-resistant [aac(3)-IV positive] E. coli in diseased pigs and healthy finishers at slaughter. The duration of use and amounts used both had a significant effect on the prevalence of apramycin/gentamicin cross-resistance in diseased weaning pigs at the national level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call