Abstract

BackgroundKlebsiella pneumoniae is a common cause of nosocomial infections. Antibiotic resistance and ability to form biofilm, as two key virulence factors of K. pneumoniae, are involved in the persistence of infections. The purpose of this study was to investigate the correlation between antimicrobial resistance and biofilm formation capability among K. pneumoniae strains isolated from hospitalized patients in Iran.MethodsOver a 10-month period, a total of 100 non-duplicate K. pneumoniae strains were collected. Antibiotic susceptibility was determined by Kirby–Bauer disk diffusion method according to CLSI. Biofilm production was assessed by tissue culture plate method. Finally, polymerase chain reaction was conducted to detect four families of carbapenemase: blaIMP, blaVIM, blaNDM, blaOXA−48; biofilm formation associated genes: treC, wza, luxS; and K. pneumoniae confirming gene: rpoB.ResultsMost of the isolates were resistant to trimethoprim-sulfamethoxazole (52 %), cefotaxime (51 %), cefepime (43 %), and ceftriaxone (43 %). Among all the 100 isolates, 67 were multidrug-resistant (MDR), and 11 were extensively drug-resistant (XDR). The prevalence of the blaVIM, blaIMP, blaNDM, and blaOXA−48 genes were 7 , 11 , 5 , and 28 %, respectively. The results of biofilm formation in the tissue culture plate assay indicated that 75 (75 %) strains could produce biofilm and only 25 (25 %) isolates were not able to form biofilm. Among these isolates, 25 % formed fully established biofilms, 19 % were categorized as moderately biofilm-producing, 31 % formed weak biofilms, and 25 % were non-biofilm-producers. The antimicrobial resistance among biofilm former strains was found to be significantly higher than that of non-biofilm former strains (p < 0.05). Molecular distribution of biofilm formation genes revealed that 98 , 96 , and 34 % of the isolates carried luxS, treC, and wza genes, respectively.ConclusionsThe rise of antibiotic resistance among biofilm-producer strains demonstrates a serious concern about limited treatment options in the hospital settings. All of the data suggest that fundamental actions and introduction of novel strategies for controlling of K. pneumoniae biofilm-related infections is essential.

Highlights

  • Klebsiella pneumoniae is a common cause of nosocomial infections

  • Carbapenems are a class of highly effective antibiotic agents versus infections caused by Multidrug-resistant K. pneumoniae (MDR-Kp) strains, though their application in administration of infections is threatened by development of carbapenem-resistant K. pneumoniae (CR-Kp) strains [3, 5]

  • Bacterial isolation In total, 100 non-duplicative clinically-relevant K. pneumoniae were collected from urine (n = 61), wound exudates (n = 13), intratracheal tube (ITT) (n = 11) blood (n = 9), and sputum (n = 6)

Read more

Summary

Introduction

Klebsiella pneumoniae is a common cause of nosocomial infections. Antibiotic resistance and ability to form biofilm, as two key virulence factors of K. pneumoniae, are involved in the persistence of infections. LuxS (type II quorum-sensing regulatory system) and pgaABCD operon, which are responsible for synthesis of poly-β-1,6-N-acetyl-d-glucosamine (PGA) (PgaC and PgaD) and secretion of PgaA and PgaB adhesions, which affect biofilm development by increasing cell-to-cell interactions as well as abiotic surface binding and intercellular adhesion [11]. Though, it seems that antimicrobial resistance and bacterial tendency to biofilm production, play a key role in the emergence of MDR-Kp strains, the clear correlation between these traits has not been completely elucidated. The purpose of this study was to investigate the antimicrobial resistance and biofilm formation capability among K. pneumoniae strains isolated from hospitalized patients

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call