Abstract

T91 steel with favorable mechanical performance has become the representative heat-resistant steel used as heat exchange surfaces in supercritical and ultra-supercritical boilers. The organizational structure and mechanical properties change during the service period, called material aging, which affects the service life and the equipment safety. To develop a fast and easy aging predictive technique of heat exchange metal surfaces, laser-induced breakdown spectroscopy (LIBS) was applied to investigate the plasma characteristics of T91 steel specimens with different aging grades. The metallographic structure, mechanical properties and spectral characteristics of the specimens were analyzed. Then, the correlations between the spectral characteristics and the aging grade were established. The analysis results show that the martensite substructure disappears, and the dimension of the carbide particles among the crystal lattices increases with aging. At the same time, the hardness of the samples gradually decreases. The peak intensities of both the matrix and the alloying element increases then decreases with aging, owing to the change of the metallography structure and mechanical properties. Furthermore, good unique value correlations between the intensity ratio of CrI/FeI, MoI/FeI and the aging grade are found. This demonstrates that LIBS is a possible new way to estimate the aging grade of metal materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call