Abstract

BackgroundArboviral disease transmitted by Aedes albopictus such as dengue fever is an important threat to human health. Pyrethroid resistance raises a great challenge for mosquito control. A systematic assessment of Ae. albopictus resistance status in China is urgently needed, and the study of correlation between pyrethroid resistance and knockdown resistance (kdr) mutations would provide information to guide the control of the Ae. albopictus vector.MethodsFive field populations of Ae. albopictus were collected from Jinan (JN), Hangzhou (HZ), Baoshan (BS), Yangpu (YP) and Haikou (HK), China in 2017. Insecticide-impregnated papers were prepared with four pyrethroid chemicals, deltamethrin, permethrin, beta-cypermethrin and lambda-cyhalothrin. The susceptibility of Ae. albopictus to pyrethroids was tested by the WHO tube assay. Kdr mutations were identified by PCR and sequencing. Moreover, the correlation analysis between kdr alleles and pyrethroid resistance was performed.ResultsAll five populations of Ae. albopictus showed resistance to four pyrethroid insecticides. One kdr mutant allele at codon 1532 and three at 1534 were detected with frequency of 5.33% (I1532T), 44.20% (F1534S), 1.83% (F1534 L) and 0.87% (F1534C), respectively. Both 1532 and 1534 mutation mosquitoes were found in the BS and YP populations. Allele I1532T was negatively correlated with deltamethrin resistance phenotype (OR < 1), while F1534S mutation was positively correlated with deltamethrin and permethrin resistance (OR > 1).ConclusionsThe five field populations of Ae. albopictus adults were all resistant to deltamethrin, permethrin, beta-cypermethrin and lambda-cyhalothrin. Mutant F1534S was clearly associated with pyrethroid resistance phenotype in Ae. albopictus and this could be developed as a molecular marker to monitor the pyrethroid resistance problem in China.

Highlights

  • Arboviral disease transmitted by Aedes albopictus such as dengue fever is an important threat to human health

  • Several surveys indicated that pyrethroid resistance in Culex pipiens pallens Coquillett, Anopheles sinensis Wiedemann and Ae. aegypti Linnaeus were associated with kdr mutations [11,12,13,14,15]

  • Kdr alleles frequency in Ae. albopictus field populations Sequences of domains II, III and IV of the voltage-gated sodium channel (VGSC) gene were obtained from 303 mosquitoes exposed to deltamethrin and 326 individuals exposed to permethrin

Read more

Summary

Introduction

Arboviral disease transmitted by Aedes albopictus such as dengue fever is an important threat to human health. A systematic assessment of Ae. albopictus resistance status in China is urgently needed, and the study of correlation between pyrethroid resistance and knockdown resistance (kdr) mutations would provide information to guide the control of the Ae. albopictus vector. Understanding the mechanism of mosquito resistance to pyrethroids would be beneficial to development of novel insecticides or application methods. Known as knockdown resistance (kdr) caused by mutations in the voltage-gated sodium channel (VGSC) gene, which is the target site of pyrethroids [10]. In 2015, our research team detected new mutant alleles F1534S and F1534 L in Ae. albopictus larvae from Haikou, Hainan, China, and identified that the F1534S mutant allele was associated with pyrethroid resistance [16, 17]. The F1534S/L mutations were found in Ae. albopictus from Guangzhou, Guangdong, China [4, 18]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call