Abstract

Previous studies indicate that phenolic solutes adsorb from hexane onto an acrylic ester sorbent (XAD-7, Rohm and Haas) through a hydrogen-bonding mechanism. Because of experimental limitations, adsorption studies typically provide only thermodynamic energies but no direct mechanistic information. To overcome this limitation, the authors used ethyl propionate as a small molecule analogue of the acrylic ester sorbent and studied solution-phase hydrogen bonding between ethyl propionate and various phenolic solutes. Consistent with a hydrogen-bonding mechanism, FTIR spectra of hexane solutions containing phenols showed that the hydroxyl stretching peak was broadened and displaced to lower wavenumbers in the presence of ethyl propionate. Molecular modeling showed hydrogen bonding between the phenolic hydroxyl and the carbonyl oxygen of ethyl propionate. Qualitatively, small molecule hydrogen bonding studies provide evidence that the poor adsorption of 2,6-disubstituted phenols is due to steric limitations. For 2,6-dimethylphenol and 2,6-di-tert-butylphenol, IR spectra showed suppressed hydrogen bond formation with ethyl propionate, whereas molecular modeling showed that the hydrogen bonds that did form were lengthened and distorted compared to those of phenol. The small molecule binding studies also provided qualitative evidence that the poor adsorption of 2-methoxyphenol and 2-chlorophenol is due to competing intramolecular hydrogen bonds. Quantitatively, it was observed that formore » a series of phenolic solutes the adsorption affinity cross-correlates to the IR frequency shift observed for hydrogen bonding to ethyl propionate. Correlations between adsorption affinities and computed binding energies were limited because of the insensitivity of computed binding energies to substituent effects. These studies indicate that the small molecule analogue provides a convenient system for studying hydrogen-bonding interactions that affect adsorption onto the polymeric adsorbent.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.