Abstract

The mechanism of the effect of particle addition on sonochemical reaction is studied through the measurements of frequency spectrum of sound intensity for evaluating the cavitation noise and the absorbance for the liberation of iodine from an aqueous solution of KI as an index of oxidation reaction by ultrasonic irradiation in the presence or absence of alumina particles. As it is expected that both the acoustic noise and a rise in temperature in the liquid irradiated by intense ultrasound will increase with the number of collapsing bubbles, these are supposed to be the best tools for evaluating the relative number of bubbles. In the present investigation, it has been shown that the addition of particles with appropriate amount and size results in an increase in the absorbance when both the acoustic noise and the rise in the liquid temperature due to cavitation bubbles also increase. This suggests that the enhancement in the yield of sonochemical reaction by appropriate particle addition comes from an increase in the number of cavitation bubbles. The existence of particle in liquid provides a nucleation site for cavitation bubble due to its surface roughness, leading to the decrease in the cavitation threshold responsible for the increase in the number of bubbles when the liquid is irradiated by ultrasound. Thus, from the present investigation, it is clarified that the particle addition has a potential to enhance the yield in the sonochemical reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call