Abstract

In the production of sherry wines, the process of biological aging is essential for the development of their organoleptic properties. This process involves velum formation by "flor" yeasts. Several of these yeast strains have been isolated and characterized with regard to their genetic, physiological and metabolic properties. In this work, we studied their resistance to cold-, osmotic-, oxidative-, ethanol- and acetaldehyde-stress, and found, in most cases, a correlation between resistance to acetaldehyde stress and ethanol stress and isolation from "soleras." Moreover, gene expression analysis revealed induction of the heat shock protein (HSP) genes HSP12, HSP82, and especially HSP26 and HSP104, under acetaldehyde stress in most of the strains. In strain C, there was a clear correlation between resistance to ethanol and acetaldehyde, the high induction of HSP genes by these compounds and its presence as the predominant strain in most levels of several soleras.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.