Abstract
Visual target tracking is one of the most important research areas in the field of computer vision. Within this realm, multiple targets tracking (MTT) under complicated scene stands out for its great availability in real life applications, such as urban traffic surveillance and sports video analysis. However, in MTT, main difficulties arise from large variation in target saliency and significant motion heterogeneity, which may result in the failure of tracking weak targets. To tackle this challenge, a novel hierarchical layered tracking structure is proposed to perform tracking sequentially layer-by-layer. Upon this layered structure, we establish an intertarget mutual assistance mechanism on basis of intertarget correlation exploited among targets. The tracking results of a subset of targets can be utilized as additional prior information for tracking other targets. Specifically, a nonlinear motion model as well as a target interaction model basing on the intertarget correlation are proposed to effectively estimate the possible target region-of-interest to facilitate the prediction-based tracking. Moreover, the concept of motion entropy is introduced to quantitatively measure the degree of motion heterogeneity within the tracking scene for layer construction. Compared to other existing methods, extensive experiments demonstrated that the proposed method is capable of achieving higher tracking performance in complicated scenes, where targets are characterized with great heterogeneity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.