Abstract

Microarray data with reference to gene expression profiles have provided some valuable results related to a variety of problems, and contributed to advances in clinical medicine. Microarray data characteristically have a high dimension and small sample size, which makes it difficult for a general classification method to obtain correct data for classification. However, not every gene is potentially relevant for distinguishing the sample class. Thus, in order to analyze gene expression profiles correctly, feature (gene) selection is crucial for the classification process, and an effective gene extraction method is necessary for eliminating irrelevant genes and decreasing the classification error rate. The purpose of gene expression analysis is to discriminate between classes of samples, and to predict the relative importance of each gene for sample classification. In this paper, correlation-based feature selection (CFS) and Taguchi-binary particle swarm optimization (TBPSO) were combined into a hybrid method, and the K-nearest neighbor (K-NN) with leave-one-out cross-validation (LOOCV) method served as a classifier for ten gene expression profiles. Experimental results show that this hybrid method effectively simplifies feature selection by reducing the number of features needed. The classification error rate obtained by the proposed method had the lowest classification error rate for all of the ten gene expression data set problems tested. For six of the gene expression profile data sets a classification error rate of zero could be reached. The introduced method outperformed five other methods from the literature in terms of classification error rate. It could thus constitute a valuable tool for gene expression analysis in future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.