Abstract

Sparse support recovery from multiple measurement vectors (MMV) is studied in this paper. For years, a noticeable mismatch exists between the theories and algorithms in the research of super-resolution and direction-of-arrival (DOA) estimation that variants of separation conditions are assumed to ensure stable recovery while the corresponding algorithms rarely exploit such structural constraints. Due to the discrete nature of the separation condition, we propose to incorporate such prior information in a Mixed Integer Programming (MIP) problem with an <inline-formula><tex-math notation="LaTeX">$\ell _{0}$</tex-math></inline-formula>-based constraint. We develop a specialized branch and bound (B&amp;B) algorithm that can efficiently exploit the separation prior with guaranteed complexity reduction. Moreover, we show that computational complexity can be further reduced by leveraging the sparse array idea along with a particular perspective formulation of the MIP. The superior performance of the proposed algorithm is demonstrated via numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.