Abstract

The correlation relationships between microcirculatory parameters were studied in vessels of symmetrical organs in humans. Parameters of microcirculation in healthy volunteers were measured by the method of laser Doppler flowmetry (LDF). LDF-signal transducers were placed symmetrically on the lower parts of the right and left shoulders (3 cm above the elbow bend). Correlations between various components of the amplitude-frequency spectrum for blood flow fluctuations (myogenic, neurogenic, respiratory, and cardiac) were evaluated on symmetrical sides. A significant correlation was found for the mean value of vascular perfusion on the right side with the neurogenic, myogenic, respiratory, and cardiac components on the same side. However, the mean value of vascular perfusion on the light side was interrelated only with the cardiac component. A positive correlation was revealed between the neurogenic and myogenic components on the left side. However, the neurogenic component on the right side was positively related to the myogenic component on the opposite side. Asymmetry of correlation relationships was also observed for the respiratory and cardiac components of study spectrum. Our results illustrate the specific regulation of microcirculatory blood flow in paired organs, which is associated with the existence of functional asymmetry. The physiological mechanisms for this asymmetry require further experimental and clinical studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call