Abstract

The small intestinal basic electrical rhythm (BER) was detected simultaneously with serosal electrodes and a transabdominal superconducting quantum interference device (SQUID) magnetometer in anesthetized rabbits. We induced mesenteric ischemia to correlate serosal electrode recording of changes in BER with the SQUID magnetometer. The BER frequency was obtained by spectral analysis of the data using Fourier and autoregressive techniques. There was a high degree of correlation (r = 0.96) between the BER frequency determined using the serosal electrodes and the BER frequency ascertained from SQUID data. Additionally, the effects of an electrical insulator on the external electric and magnetic fields were studied in the rabbit model. The presence of an insulator profoundly attenuates external electric potentials recorded by cutaneous electrodes but does not significantly affect external magnetic fields or serosal potentials. We conclude that SQUID magnetometers could noninvasively record small intestinal BER that was highly correlated with the activity recorded by invasive serosal electrodes. The advantages of magnetic field measurements have encouraged us to investigate clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.