Abstract

A fundamental and still debated problem is how folded structures of proteins are related to their unfolded state. Besides the classical view, in which a large number of conformations characterize the unfolded state while the folded one is dominated by a single structure, recently a reassessment of the denatured state has been suggested. A growing amount of evidence indicates that not only the folded but also the unfolded state is at least partially organized. Here, we try to answer the question of how different protein dynamics is in folded and unfolded states by performing all-atom molecular dynamics simulations on the model protein Trp-cage. Random matrix theory inspired analysis of the correlation matrices has been carried out. The spectra of these correlation matrices show that the low rank modes of Trp-cage dynamics are outside of the limit expected for a random system both in folded and in unfolded conditions. These findings shed light on the nature of the unfolded state of the proteins, suggesting that it is much less random than previously thought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.