Abstract

This study analyzes the relationship between hormonal changes induced by exercise and variations in trace elements associated with oxidative stress during incremental exercise. Nineteen well-trained endurance athletes performed a cycle ergometer test: after a warm-up of 10min at 2.0Wkg(-1), workload increased by 0.5Wkg(-1) every 10min until exhaustion. The analysis was controlled for prior diet and activity patterns, levels of exercise training, and time of day (circadian rhythms). Whole blood lactate concentration and plasma concentrations of ions (Zn, Se, Mn, and Co), insulin, glucagon, aldosterone, thyroid stimulating hormone (TSH), calcitonin, and parathyroid hormone (PTH) were measured at rest; at the end of each stage; and 3, 5, and 7min post-exercise. The statistical analysis involved paired non-parametric tests and correlation coefficients. No significant differences were found in Mn or Co levels as a function of exercise intensity. Zn and Se levels at the end of the exercise protocol and over the recovery time were significantly different to baseline. Further, Zn levels were significantly correlated with aldosterone, calcitonin, and PTH levels, while Se levels were associated with aldosterone, calcitonin, and TSH levels. Our results indicate several different patterns of association between acute changes in hormone concentrations and variations in trace element concentrations related to oxidative stress during submaximal exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call