Abstract
Disulfidptosis, a newly discovered type of programmed cell death, could be a mechanism of cell death controlled by SLC7A11. This could be closely associated with tumor development and advancement. Nevertheless, the biological mechanism behind disulfidptosis-related genes (DRGs) in sarcoma (SARC) is uncertain. This study identified three valuable genes (SLC7A11, RPN1, GYS1) associated with disulfidptosis in sarcoma (SARC) and developed a prognostic model. The multiple databases and RT-qPCR data confirmed the upregulated expression of prognostic DRGs in SARC. The TCGA internal and ICGC external validation cohorts were utilized to validate the predictive model capacity. Our analysis of DRG riskscores revealed that the low-risk group exhibited a more favorable prognosis than the high-risk group. Furthermore, we observed a significant association between DRG riskscores and different clinical features, immune cell infiltration, immune therapeutic sensitivity, drug sensitivity, and RNA modification regulators. In addition, two external independent immunetherapy datasets and clinical tissue samples were collected, validating the value of the DRGs risk model in predicting immunotherapy response. Finally, the SLC7A11/hsa-miR-29c-3p/LINC00511, and RPN1/hsa-miR-143-3p/LINC00511 regulatory axes were constructed. This study provided DRG riskscore signatures to predict prognosis and response to immunotherapy in SARC, guiding personalized treatment decisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.