Abstract

We examine the correlation between the plasmon field distribution and the sensitivity enhancement for both reflection- and transmission-type localized surface plasmon resonance (LSPR) biosensors with surface-relief gold nanogratings. In our calculation, the near-field characteristics are obtained from the finite-difference time-domain method and compared with the refractive index sensitivity as a unit target sample moves along the sensor surface. The numerical results show that the highest enhancement of sensitivity is found at the lower grating corners where an interplay between the target sample and the locally enhanced field can occur efficiently. This study suggests that, by localizing biomolecular interactions to the highly enhanced field, we can achieve a significantly improved LSPR detection with high sensitivity and a great linearity in a wide dynamic range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.