Abstract

The study aimed to investigate the effect of red blood cell (RBC) morphology on oxygenator perfusion, focusing on stages of echinocytosis and their correlation with blood viscosity. A test circuit with an oxygenator and human RBC mixtures was used to induce changes in RBC shape by increasing sodium salicylate concentrations (0, 10, 20, 30, 60, and 120 mmol/L), while hematocrit, blood temperature, and anticoagulation were maintained. Blood viscosity was measured using a continuous blood viscosity monitoring system based on pressure-flow characteristics. Under a scanning electron microscope, the percentages of discocytes, echinocytes I-III, spheroechinocytes, and spherocytes were determined from approximately 400 cells per RBC sample. Early echinocytes, mainly discocytes and echinocytes I and II in the range of 0-30 mmol/L were predominant, resulting in a gradual increase in blood viscosity from 1.78 ± 0.12 to 1.94 ± 0.12 mPa s. At 60 mmol/L spherocytes emerged, and at 120 mmol/L, spheroidal RBCs constituted 50% of the population, and blood viscosity sharply rose to 2.50 ± 0.15 mPa s, indicating a 40% overall increase. In conclusion, the presence of spherocytes significantly increases blood viscosity, which may affect oxygenator perfusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call