Abstract

Tomato fruit undergo an orderly series of physiological and morphological changes as they progress from mature-green (MG) to red-ripe. Fruit are commercially harvested at the MG stage, a stage which often encompasses fruit of varying degrees of maturity. The ability to predict the time required for MG fruit to ripen would reduce variability in experiments and could be commercially used to pack fruit that would ripen uniformly. Nuclear magnetic resonance (NMR) imaging can nondestructively measure internal changes associated with plant growth and developmental. In this study, NMR images were taken of freshly harvested tomato fruit (Lycopersicum esculentum cv. Castlemart) at different stages of maturity and ripeness. Measurements were also made of the stage of ripeness, rate of respiration and ethylene production, lycopene and chlorophyll content, density of the pericarp wall, and condition of locular tissue. NMR images showed substantial charges in the pericarp wall and locular tissue during maturation and ripening of tomato fruit. However, it was difficult to objectively evaluate these visual changes with other ripening parameters. For example, increased lightness and graininess of the pericarp wall image was associated with a decrease in wall density; while lightening of the locular image was associated with tissue liquefacation. Use of NMR imaging in studies of tomato fruit ripening will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.