Abstract

Geochemical as well as multivariate statistical analyses (PCA) were carried out on 20 crude oil samples from ‘Middle’ Pliocene Production Series (MPPS) of Guneshli-Chirag-Azeri (GCA), Bahar, and Gum Adasi fields in the western South Caspian Basin (SCB). PCA analysis employed to source-specific biomarkers distinguishes the oils into two types one being divided into two sub-types; Type 1 (GCA oils), Type 2A (Bahar field oils) and Type 2B (Gum Adasi field oils). Indirect oil-to-source rock correlations to available source rock data from previous studies suggest that Type 1 oils, located in the Apsheron-Balkhans uplift area, are derived from basinal shales of the Oligocene-Lower Miocene Middle Maikop Formation. Type 2A and 2B oils, located in the Gum-deniz-Bahar-Shakh-deniz trend area, are more likely derived from shelf-edge shales of the Upper Maikop Formation and the Middle-Upper Miocene Diatom Suite, respectively. Biomarker maturity study reveals that Type 1 oils (mean %Rc=0.78) are more mature than Type 2 oils (mean %Rc=0.71). Source rocks, which generated these oils, were at generation depth interval between 5200 m (112 °C) and 7500 m (153 °C) at the time of expulsion. This indicates that the western SCB oils experienced significant long-range vertical migration along the deep-seated faults to accumulate in the MPPS reservoirs. Post-accumulation biodegradation process was only observed in the Guneshli field where bacterial alteration (level 4) began between 4.2 and 2.6 mybp and stopped with the deposition of the overlying impermeable Upper Pliocene Akchagyl Formation. Subsequent light hydrocarbon (C 1–C 16) charge into the Guneshli fields caused precipitation of asphaltenes, which is evidenced by high resin to asphaltene ratios for the present-day Guneshli oils. Evaporative-fractionation examined using the scheme of Thompson (1987) showed high correlations of the ‘aromaticity’ B parameter (=toluene/ n-C 7) and ‘parafinicity’ F parameter (= n-C 7/MCH with the %Rc (maturity) and C 27/C 29 sterane ratio (organic matter type). This implies that Thompson's approach should be used with caution in the SCB. Among the several mechanisms, rapid and thick deposition of Pliocene sediments and subsequent high heating rate on the Maikop Formation and Diatom Suite is probably the most plausible way of explaining the origin of light hydrocarbons in the Guneshli and Bahar fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call