Abstract

Thermal conductivity of carbon fibers (CFs), being one of the important properties, is not easily quantified due to practical difficulties in measuring it. We suggest a universal correlation between the thermal conductivity of CFs and their electrical and mechanical properties in order to estimate it without direct measurement. Crystalline structural information did not show a clear correlation with thermal conductivity, especially for commercially available polyacrylonitrile- or isotropic pitch-based CFs that have less than a few nanometers of La and Lc. However, in a correlation between tensile modulus and thermal conductivity, there are three distinct regions and two properties increase with a different inclination in each region. We envisage tensile modulus to be utilized to estimate thermal conductivity without a direct measurement for all kinds of CFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.