Abstract

Understanding microbe-host interactions at the molecular level is a major goal of fundamental biology and therapeutic drug development. Structural biology strives to capture biomolecular structures in action, but the samples are often highly simplified versions of the complex native environment. Here, we present an Escherichia coli model system that allows us to probe the structure and function of Ail, the major surface protein of the deadly pathogen Yersinia pestis. We show that cell surface expression of Ail produces Y. pestis virulence phenotypes in E. coli, including resistance to human serum, cosedimentation of human vitronectin, and pellicle formation. Moreover, isolated bacterial cell envelopes, encompassing inner and outer membranes, yield high-resolution solid-state NMR spectra that reflect the structure of Ail and reveal Ail sites that are sensitive to the bacterial membrane environment and involved in the interactions with human serum components. The data capture the structure and function of Ail in a bacterial outer membrane and set the stage for probing its interactions with the complex milieu of immune response proteins present in human serum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.