Abstract

The present work was conducted to study the effects of microstructural evolutions on the mechanical and wear behavior of an accumulative back extruded aluminum-based in-situ composite. The mechanical fragmentation and thermal disintegration of the primary and secondary Mg2Si particles were found as the main microstructural changes. For that reason, the particle interspacing was decreased, the sharp ends were modified, and the reinforcements were more uniformly distributed. Surprisingly, the wear loss was dramatically decreased in processed materials in comparison to the as-received one. Oxidation and delamination were identified as the dominant wear mechanisms. These were addressed considering the microstructural refinement, and the modification of reinforcing particles with regard to morphology (rod-like, wormy or dot-like), size and distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.