Abstract

Considering the absence of reports dealing with the perovskite-structured orthochromites containing two A-site magnetic rare-earth ions, GdCrO3 and progressively Dy3+-substituted samples of the series Gd1–xDyxCrO3 have been synthesized employing the epoxide-mediated sol–gel procedure. The samples were characterized extensively using high-resolution powder X-ray diffraction, thermal analysis, Fourier transform infrared, Raman, and UV–visible spectroscopies, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) measurements. Monophasic samples possessing an orthorhombic perovskite structure emerged by calcining the xerogels formed by the reaction of rare-earth nitrates, chromium(III)chloride, and propylene oxide at 800 °C for 2 h. Uniform presence of wormlike morphology was observed in both the field emission SEM (FE-SEM) and TEM images of the samples. Zero-field and field-cooled magnetic measurements using a SQUID magnetometer down to 4 K showed that the Neel temperature of Gd0.5Dy0.5CrO3 was 155 K, more or less midway between the values observed for GdCrO3(169 K) and DyCrO3 (146 K). For the Gd0.5Dy0.5CrO3 sample, a spin reorientation was observed at ∼38 K when measured under an applied field. Because the optical band gap, determined by Kubelka–Munk function, of these chromites was around 3 eV, their application as a catalyst for the photodegradation of the aqueous rhodamine-6G dye solution was demonstrated, in which the percentage of the total dye that was degraded varied with the average ionic radius of A-site ions. A similar systematic trend was observed even for the catalytic oxidation of the XO dye in the presence of H2O2, with DyCrO3 influencing the reaction to a greater extent followed by Gd0.5Dy0.5CrO3 and GdCrO3. Both the photocatalytic and catalytic reactions followed pseudo-first-order kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.