Abstract

The present study presents synthesis, characterization and first principle studies on metal chelates, (1-12), of sulfonamide-isatin reacted ligands (S1-S3). All the products were evaluated by various physical and spectral (UV, IR, NMR, MS) means. The octahedral geometry for Co+2, Ni+2 and Zn+2, while square planner geometry for Cu+2 chelates were confirmed by their spectroscopic and magnetic data. Their physical chemistry investigation show the ability of aromatic rings to stabilize sulfonamide rings across NH-π interactions at their optimized geometries. The nonlinear optical response for all the compounds disclosed that the z-axis has the most contributions. An efficient electron injection and hole studies for Au and Al electrodes having the energies of -0.1-3.1 and 0.0-11.8eV respectively were noted. Their bioactive character was shown by global reactivity calculated from FMO energy gaps. The enzyme inhibitory results were found to be 45-61% and IC50 = 102-122 µL, for compound (4), (10), (8), (5) and (12) against the amylase, protease, acetylcholinesterase(AChE), and butyrylcholinesterase (BChE) respectively The antibacterial findings showed significant action having 11-17mm for (2), (7) and (10) for bacterial species, Escherichia coli and Micrococcus luteus. The DPPH and ferric reducing power assay was used to evaluate the antioxidant capacity with 49.0 ± 0.09-66.2 ± 0.08% and IC50 = 102.3-122.4µL range. In comparison to ligands, the results showed that all metal chelates had higher bioactivity. The chelation was the primary cause of their increased bioactivity. These findings suggested that such metal-based compounds might be used as antimicrobial, and antioxidant options in future to cope drug resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call