Abstract

Assemblies of 3.5 nm PbS nanoparticles (NPs) nucleate in three dominant superlattice polymorphs: amorphous, body-centered-cubic (bcc) and face-centered-cubic (fcc) phase. This superlattice relationship can be controlled by the inter-NP distance without changing the NP size. Upon increase of inter-NP distance, the packing density decreases, and the capping molecules at NP surfaces change in structure and accordingly modify the surface energy. The driving force for NP assembly develops from an entropic maximization to a reduction of total free energy through multiple interactions between surface molecules and NPs and resulting variation of surface molecules. Upon long-term aging and additional thermal treatment, fcc undergoes a tetragonal distortion and subsequently transforms to bcc phase, and simultaneously, the NPs embedded in supercrystals reduce surface energy primarily in {200} facets. Linking molecule-NP interactions with a series of changes of packing density and surface lattice spacings of NPs allows for an interpretation of principles governing the nucleation, structure stability, and transformation of PbS NP-assembled supercrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.