Abstract

Thiolate protected gold nanoclusters (TPNCs) are a unique class of nanomaterials finding applications in various fields, such as biomedicine, optics, and catalysis. The atomic precision of their structure, characterized through single crystal x-ray diffraction, enables the accurate investigation of their physicochemical properties through electronic structure calculations. Recent experimental efforts have led to the successful heterometal doping of TPNCs, potentially unlocking a large domain of bimetallic TPNCs for targeted applications. However, how TPNC size, bimetallic composition, and location of dopants influence electronic structure is unknown. To this end, we introduce novel structure-property relationships (SPRs) that predict electronic properties such as ionization potential (IP) and electron affinity (EA) of AgAu TPNCs based on physically relevant descriptors. The models are constructed by first generating a hypothetical AgAu TPNC dataset of 368 structures with sizes varying from 36 to 279 metal atoms. Using our dataset calculated with density functional theory (DFT), we employed systematic analyses to unravel size, composition, and, importantly, core-shell effects on TPNC EA and IP behavior. We develop generalized SPRs that are able to predict electronic properties across the AgAu TPNC materials space. The models leverage the same three fundamental descriptors (i.e., size, composition, and core-shell makeup) that do not require DFT calculations and rely only on simple atom counting, opening avenues for high throughput bimetallic TPNC screening for targeted applications. This work is a first step toward finely controlling TPNC electronic properties through heterometal doping using high throughput computational means.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call