Abstract
By analyzing the time series of RXTE/PCA data, the nonlinear variabilities of compact sources have been repeatedly established. Depending on the variation in temporal classes, compact sources exhibit different nonlinear features. Sometimes they show low correlation/fractal dimension, but in other classes or intervals of time they exhibit stochastic nature. This could be because the accretion flow around a compact object is a nonlinear general relativistic system involving magnetohydrodynamics. However, the more conventional way of addressing a compact source is the analysis of its spectral state. Therefore, the question arises: What is the connection of nonlinearity to the underlying spectral properties of the flow when the nonlinear properties are related to the associated transport mechanisms describing the geometry of the flow? The present work is aimed at addressing this question. Based on the connection between observed spectral and nonlinear (time series) properties of two X-ray binaries: GRS 1915+105 and Sco X-1, we attempt to diagnose the underlying accretion modes of the sources in terms of known accretion classes, namely, Keplerian disc, slim disc, advection dominated accretion flow (ADAF) and general advective accretion flow (GAAF). We explore the possible transition of the sources from one accretion mode to others with time. We further argue that the accretion rate must play an important role in transition between these modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.