Abstract

Control over the composition, shape, size, stability, and local dielectric environment of solution-phase metallic substrates is vital to consistent surface-enhanced Raman scattering (SERS) signals. Because of their inherent instability, solution-phase nanoparticles can undergo uncontrolled aggregation when target molecules are added. Here, we demonstrate that both molecular surface coverage of the Raman active molecule, 2-naphthalenethiol (2-NT), and nanoparticle concentration are critical parameters for obtaining reproducible SERS signals using solution-phase gold nanoparticles. Both gold nanoparticle and 2-naphthalenethiol concentrations are varied, and the extinction of the nanoparticle substrate and the SERS intensity of the target molecule are monitored as a function of time. These results indicate that extinction and SERS spectral intensities increase predictably below full monolayer surface coverage. When excess molecules are added, uncontrolled and irreproducible nanoparticle aggregation leads to ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.