Abstract

The thin film microstructure development of functionalized oligothiophenes with branched, thermally removable groups at each end of conjugated cores with five, six, and seven thiophene rings was monitored during their thermal conversion from solution processible precursors to insoluble semiconductor products. The change in end group character provides a comparison of branched vs linear end group functionalization in oligothiophenes. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy confirmed that branched alpha-, omega-substitutions of the precursors strongly influenced the packing of the conjugated core. The quinque- and sexithiophene precursors oriented perpendicular to the substrate, whereas the septithiophene precursor oriented parallel to the substrate, providing one of the first examples of length dependence in oligothiophene orientation. This dependence may be due to a packing mismatch between the conjugated cores and the branched end groups. The convertible septithiophene exhibits four distinct microstructures as it converts from precursor to product that correlate strongly with its field-effect hole mobility in field-effect transistors. The extent of septithiophene order and the surface-relative orientation of its ordered phases clearly influence field-effect transistor performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.