Abstract

Li2MnO3 is believed to be a critical component of the high capacity Li-rich–manganese-rich oxide materials; however, the mechanism of its electrochemical activity remains controversial. Here, Raman spectroscopy and mapping are used to follow the chemical and structural changes that occur in Li2MnO3 during electrochemical cycling. Conventional composite electrodes cast from a slurry and thin films are studied as a function of the state of charge (voltage) and cycle number. Thin films have similar electrochemical properties as electrodes prepared from slurries but enable spectroscopy of uniform samples without carbon additives and binder. First-principles density functional theory is used to calculate the phonon spectra and identify the Raman-active modes. On the basis of the calculations of phonon spectra for pristine Li2MnO3 and structures with Li vacancies, we discuss the origin of Raman-active peaks observed during the electrochemical cycling. The spectral changes correlate well with the electrochemical...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call