Abstract

Surfactants exhibit characteristic phenomena, including the reduction of interfacial free energy, self-assembly into aggregates, and even the formation of lyotropic liquid crystalline phases at high concentrations. Our research has shown that a semifluorinated phosphonic acid can act as the two-dimensional analogue of a surfactant-a linactant-by reducing the line tension between hydrocarbon-rich and fluorocarbon-rich phases in a Langmuir monolayer. This linactant can also self-assemble into nanoscale clusters in a monolayer. Here, we explore the dependence of linactant behavior on molecular structure. Members of a homologous series of partially fluorinated phosphonic acids were synthesized and tested as linactants: CF(3)(CF(2))(n-1)(CH(2))(m)PO(3)H (abbreviated as FnHmPO(3)). The tests revealed that linactants with longer hydrophobic chains were most efficient in lowering line tension. For linactants with the same overall chain length, the length of the fluorocarbon block was correlated with efficiency. Thus, the linactant efficiency was ranked in the order F8H8PO(3) < F10H6PO(3) < F8H11PO(3) < F10H9PO(3). In all cases, linactant-containing Langmuir-Blodgett monolayers exhibited nanoscale molecular clusters with characteristic dimensions of 20-30 nm; enhanced linactant efficiency was systematically correlated with larger clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call